84 research outputs found

    Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks

    Get PDF
    The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q 95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.Ministerio de Economía y Empresa ((RYC-2011-09152 y ENE2012-31087)Marie Curie (Grant PCIG11-GA-2012-321455)US Department of Energy (DE-FC02-04ER54698, SC-G903402, DE-FG02-04ER54761, DE-AC02-09CH11466 and DE-FG02- 08ER54984)NRF Korea contract 2009-0082012MEST under the KSTAR projec

    Enhanced understanding of non-axisymmetric intrinsic and controlled field impacts in tokamaks

    Get PDF
    An extensive study of intrinsic and controlled non-axisymmetric field (dB) impacts in KSTAR has enhanced the understanding about non-axisymmetric field physics and its implications, in particular, on resonant magnetic perturbation (RMP) physics and power threshold (Pth) for L-H transition. The n = 1 intrinsic non-axisymmetric field in KSTAR was measured to remain as low as delta B/ B0 x 4 x 10(-5) even at high-beta plasmas (beta(N) similar to 2), which corresponds to approximately 20% below the targeted ITER tolerance level. As for the RMP edge-localized-modes (ELM) control, robust n = 1 RMP ELM-crash-suppression has been not only sustained for more than similar to 90 iota(E), but also confirmed to be compatible with rotating RMP. An optimal window of radial position of lower X-point (i. e. R-x = 1.44 +/- 0.02 m) proved to be quite critical to reach full n = 1 RMP-driven ELM-crash-suppression, while a constraint of the safety factor could be relaxed (q(95) = 5 +/- 0.25). A more encouraging finding was that even when Rx cannot be positioned in the optimal window, another systematic scan in the vicinity of the previously optimal Rx allows for a new optimal window with relatively small variations of plasma parameters. Also, we have addressed the importance of optimal phasing (i. e. toroidal phase difference between adjacent rows) for n = 1 RMP-driven ELM control, consistent with an ideal plasma response modeling which could predict phasing-dependent ELM suppression windows. In support of ITER RMP study, intentionally misaligned RMPs have been found to be quite effective during ELMmitigation stage in lowering the peaks of divertor heat flux, as well as in broadening the ` wet' areas. Besides, a systematic survey of Pth dependence on non-axisymmetric field has revealed the potential limit of the merit of low intrinsic non-axisymmetry. Considering that the ITER RMP coils are composed of 3-rows, just like in KSTAR, further 3D physics study in KSTAR is expected to help us minimize the uncertainties of the ITER RMP coils, as well as establish an optimal 3D configuration for ITER and future reactors

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Detection of slowly rotating n???=???1 mode with signal compensation for an externally perturbed field in the KSTAR tokamak

    No full text
    A mode identification method for slowly rotating (or non-rotating) n (toroidal mode number)???=???1 plasma instabilities has been newly established with the signal compensation method used for an external time-varying magnetic field. The mode identification method is based on the Fourier decomposition scheme and processes the signal of the magnetic probes (MPs) on the passive stabilizer in the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. To exclude the non-plasma magnetic perturbation by the external current coils and their secondary eddy currents on the passive stabilizer that may not be easily characterized, the ARX-SISO (autoregressive with exogenous terms-single input single output) method has been introduced in the signal compensation process. Preliminary off-line analysis presented herein confirms that this method can adequately detect the time evolution of the mode-locking, along with a slowly rotating state, even in the presence of external magnetic perturbations

    Direct evidence of E ?? B flow changes at the onset of resonant magnetic perturbation-driven edge-localized mode crash suppression

    No full text
    The bifurcation of perpendicular mode velocity near the pedestal top () at the onset of RMP-driven edge-localized mode (ELM)-crash suppression has been directly measured by using an electron cyclotron emission imaging diagnostic on KSTAR. The ELM crashes are suppressed along with a sudden reduction of , which synchronizes with the transition into and out of the ELM-crash suppression. The change of flow appears mainly responsible for the change of , whose magnitude is the smallest near the normalized flux surface during the ELM-crash suppression. The plasma response to the RMP field was most enhanced in the vicinity of during the ELM-crash suppression and showed a hysteresis behavior with respect to resonant field strength. With these changes, a strong nonlinear coupling between turbulent eddies was observed in the ELM-crash suppression, which is an important feature of the ELM-crash suppression

    Study of MHD and Turbulence via Advanced 2d/3d Imaging Systems on KSTAR

    No full text
    Summary form only given. MagnetoHydroDynamic (MHD) instabilities and turbulence phenomena in tokamak plasmas are complex and multi-dimensional. It is imperative to equip 2D/3D diagnostic systems for a full understanding, which is essential to perfect the theoretical models for MHD and turbulence based transport physics. On KSTAR, such a unique opportunity will be established. A 2D Electron Cyclotron Emission Imaging (ECEI) system has been the leading tool for this effort and it will be extended to a 3D measurement with an additional system at a toroidally separated position in 2012. A 2D Microwave Imaging System (MIR) for density turbulence measurements will be combined with this system. Following a successful operation of the prototype Beam Emission Spectroscopy (BES) system on KSTAR, the full 2D system (8×8) is expected to be operational in 2012. These three imaging diagnostic systems on KSTAR will be instrumental in assessing the multi-dimensional turbulent/fluctuation spectra for the density and temperature. In this paper, MHD study results from the KSTAR ECEI system will be presented, along with a correlation study between the density fluctuations from BES and temperature fluctuations from ECEI. The future study plan for multi-dimensional correlation between Te and ne fluctuation from BES, MIR and ECEI systems will be the focus of this paper

    Two-dimensional imaging of edge-localized modes in KSTAR plasmas unperturbed and perturbed by n=1 external magnetic fields

    No full text
    The temporal evolution of edge-localized modes (ELMs) has been studied using a 2-D electron cyclotron emission imaging system in the KSTAR tokamak. The ELMs are observed to evolve in three distinctive stages: the initial linear growth of multiple filamentary structures having a net poloidal rotation, the interim state of regularly spaced saturated filaments, and the final crash through a short transient phase characterized by abrupt changes in the relative amplitudes and distance among filaments. The crash phase, typically consisted of multiple bursts of a single filament, involves a complex dynamics, poloidal elongation of the bursting filament, development of a fingerlike bulge, and fast localized burst through the finger. Substantial alterations of the ELM dynamics, such as mode number, poloidal rotation, and crash time scale, have been observed under external magnetic perturbations with the toroidal mode number n = 1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694842
    corecore